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THE DISSIPATION RANGE IN ROTATING TURBULENCE*

ROBERT RUBINSTEIN? AND YE ZHOU :t

Abstract. The dissipation range energy balance of the direct interaction approximation is applied to

rotating turbulence when rotation effects persist well into the dissipation range. Assuming that RoRe 1/2 < <

1 and that three-wave interactions are dominant, the dissipation range is found to be concentrated in the

wavevector plane perpendicular to the rotation axis. This conclusion is consistent with previous analyses

of inertial range energy transfer in rotating turbulence, which predict the accumulation of energy in those

scales.
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1. Introduction. Kraichnan [1} demonstrated that despite the analytical complexity of the equations

of the direct interaction approximation, solutions representing the universal inertial and dissipation ranges of

turbulence are readily accessible. In the inertial range, where energy transfer vanishes, the closure equations

are satisfied by a power law spectrum with a constant energy flux from large to small scales of motion.

In the dissipation range, viscous dissipation balances the energy input to each scale from nonlinear

interaction. By assuming that the turbulent time scale is the viscous time scale O ,,_ (vk2) -1 , the dissipation-

range spectrum

(1.1) E(k) ,., k a exp(-_k/kd)

is obtained. In Eq. (1.1), kd -- (s/_3)1/4 is the Kolmogorov scale; _ will be used throughout to denote

a universal constant, but not the same constant each time it appears. This spectrum is consistent with

experimental and numerical data [2, 3]. The theory also predicts that nonlinear interactions in the dissipation

range are predominantly among nearly collinear wavevector triads; this conclusion is evaluated in [4, 5, 6].

Kraichnan [1] also proposed a near-dissipation range balance in which a nonlinear time scale replaces the

viscous time scale. If this time scale is determined, consistently with Eulerian DIA by the sweeping hypothesis

O _-. (V0k) -1, the energy spectrum E(k) _., k 2 exp(-k/kd) is obtained. If the Kolmogorov time-scale is used

instead, the result would be

(1.2) E(k) ._ k 5/3 exp(-k/kd)

Sirovich et al. [7] propose an energy spectrum covering both the inertial and dissipation ranges which reduces

to Eq. (1.2) in the dissipation range.

2. Analysis. In rotating turbulence, the additional time-scale introduced by the Coriolis force makes a

variety of dissipation range balances possible. Thus, although the very smallest scales will always be subject
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to the viscous time-scale, leading to the spectrum of Eq. (1.1), a diffcrcnt result might be anticipated when

wave interactions dominate nonlinearity well into the dissipation range.

The standard elementary scaling arguments suggest when this condition applies. The wave frequency in

rotating turbulence is determined by the dispersion relation of inertial waves as w(k) = flkz/k. To begin,

we will ignore the angular dependence of this frequency. Assuming the spectrum [8] for rapid rotation

E(k) ,'_ @_)1/2k-2 and defining the rotational dissipation scale ku,n by the condition

kd,_(2.1) uk2E(k)dk = e
J0

there results ku,o _'_ (¢/_'_l]2) 1/2. The viscous frequency scale exceeds the wave frequency scale at k'd,n defined

by , 2I2(kd.o) _ ft. Assume that this scale is much larger than kd,o so that

¢1/2 _ RoRe 1/2 << 1(2.2) k ' ~d,n/kd, g_ _'_//1/2

and consider the scales satisfying ka,n < k < k_,a.

The direct interaction approximation (DIA) predicts the dissipation range energy balance [1]

2.k Q(k) = dpdq - p - q) dT×

(2.3) Pi,_,,(k)Pi,,,(k)Qm,(p, r)Qn_ (q, r)Gii, (k, r)

Standard notation is used in Eq. (2.3): Q_j(k, _-) = < ui(k, t)uj(k', s) >/6(k+k') is the two-time correlation

function, where _- denotes the time difference T = t -- S. The single-time correlation function is denoted by

Q,j (k), and the DIA response function is Gij(k, v). The tensorially isotropic form Qij (k) = Q(k)Pij(k) is

assumed, where Pij (k) = 6ij - k, kj k -2 and finally, Piton (k) = kmPin (k) + k,_Pim (k).

Eq. (2.3) is simply the general DIA energy balance, with eddy damping ignored in comparison to viscous

damping. The assumption Eq. (2.2) means that wave turbulence theory [9] applies in the dissipation range.

Therefore, the DIA response function G 0 is simply the linear response

(2.4) a 0 (k, r) = {cos(2flGr)/k)(Tj (k) + sin(2flk:r)lk)_°j (k)}H(_-)

where H is the unit step function and the tensors _i arc defined in terms of the Craya-Herring basis

e(1)(k) = k×12/I k×fl I

e(2)(k) = kx(k×fl)/I k×(k×n) I

by

_Tj = ei(1)ej(2) _ @1)e_2). .

(z6) ¢7j (').-_ e i ej Jr e i ej

Note that _j = P_j (k). At lowest order in the weak turbulence approximation,

(2.7) Qij(k, r) = ei,n(k, r)Qmj(k) + aim(k, --r)Qm,(k)

For the correlation function Q(k), we provisionally adopt Kraichnan's dissipation range hypothesis [1]

• _a (_k/ka n)
(2.8) Q(k) = _(k/kd,a) e- ,



where the dimensional constant t_ will be determined by the calculation. Substituting Eqs. (2.4)-(2.8) in the

dissipation range balance Eq. (2.3), the right side will contain time integrals of the form

(2.9) R(k,p,q) = dvexpiT_{ ± P +o_ q

where the lower limit of integration insures that the result is real. We can assume [10]

I kz Pz qz)
(2.10) R(k,p,q) = _5(-_ + -- ±P q

As Eq. (2.10) shows, the integral in Eq.

condition

(2.3) vanishes unless the triad k, p,q satisfies the resonance

m.11_ kz Pz qz
7±-±-=0p q

But as Kraichnan [1] notes, the exponential ansatz Eq. (2.8) forces the triad to be nearly coil±near: the

quantities exp(-flk) on the left side of Eq. (2.3) and exp-_(f P I + I q I) on the right can bc comparable

only if1 k I_J p I + J q J, whence the triangle inequality implies near collinearity of the vectors k,p, q. In

this case,

(2.12)

where ±p ± q = k, and p • r = O, therefore

p = ±kk+ r

q = ±kk - r

r2)IP I P(1 + -
p2

r 2

(2.13) I q q(1+

In view of Eq. (2.8). th(, int('_ral in Eq. (2.3) decays exponentially with r.

It is immediately (,vidcm ttLat substitution of Eq. (2.12) into the resonance condition Eq. (2.11) yields

the contradiction ±1 _ l z l _ unh,,s k: is nearly zero. Thus, the resonance and collinearity conditions

can only bc satisfied iv m.artx heinz,total wavevcctor triads. The right side of Eq. (2.3) is therefore ncarly

zero for non-horizontal waw.v,_'t4,r, k. contradicting the assumption that the left side is isotropic.

But by assuming in_tea, l lha_ tt, ['n('rgy spectrum is planar, so that instead of Eq. (2.8),

(2.14) q_/k) = tc(k/kd,n)_e-(Zk/kd'n)_(kz)

we find that Eq. (2.31 _at_ |, ,,,t,-h,_l. _in(-e

/ fq dp 5(pz)_(k_)(2.15) dp, tq ,_(k -- p - q)_(pz)6(qz) = =k-p

If the dissipation range ex('itation i.- confined to the plane kz = 0, the wave time-scale does not apply since

the planar modes arc unaffect('d by rotation. The dissipation range balance must be computed assuming

the viscous time-scale instead. With this understanding, the integrations in Eq. (2.3) are easily performed

using the variables p, r in place of p, and lead to the result

(2.16) _k2a+lkl-2a/v "_ uk2(k/kd,fl) c'd,fl



where the common exponential factor has been cancelled from both sides and a common factor of 6(kz) is

cancelled using Eq. (2.15). The powers of k balance if a = 1, consequently n = u2. Therefore, the correlation

function is

(2.17) Q(k) = Cv2(k/kd,n)e-Z(k/k".'*)5(k,)

The effect of rotation is indirect: rotation excludes certain classes of vectors from the dissipation range, but

the dissipation range dynamics in the remaining scales is independent of rotation.

This conclusion was based on the impossibility of satisfying the three-wave resonance conditions by

nearly collinear vectors, except when those vectors are nearly horizontal. In problems in which the dispersion

relations do not permit threc-wave interactions, perturbation theory leads to a modified equation of motion

for waves with a higher order nonlinearity than the governing equations [11]. If the governing equations

arc quadratically nonlinear, the result is a theory with a cubic nonlinearity. For such a theory of four-wave

interactions, nontrivial resonances are always possible.

It is therefore natural to ask whether four-wave interactions could play a role in the dissipation range of

rotating turbulence. The possible role of four-wave interactions in the inertial range of rotating turbulence

has been suggested by Yakhot [12]. The dissipation range balance for four-wave interactions, which replaces

Eq. (2.3) has the form

2vk2Q_j (k) = dpdpPdqS(k - p - p' - q) dt dr' ds ×

Pimn(k)Pm,_(p)Pj,al(k)Pk,pq(p)Omm,(p, t - s)Gkk' (p, t ¢ -- s') ×

(2.18) Gjj, (k, t - t')Qrp(p', s - s')Qsq(p - p', s - t)Qnt(q, t - s)

in which only one representative term is written on the right side. The assumption of near collinearity takes

the form

p=+_k+r
!

pl = ±-_k + r I

q = +k k - r

(2.20)

Substituting the exponential ansatz Eq.

kz Pz P_ qz

T±--±p _--=Oq

(2.8) in the four-wave dissipation range balance Eq. (2.18),

(2.21) 6 4 3a -3 2k ka,n(k/ka,a ) _ t¢ = vk2(k/ka,a) '_

Balancing the powers of k gives a = -2. The definition of kd,n implies

_! _7/2V9/2 (kJk _-2e-f_'k/k. n

(2.22) Q(k) = t; D --_ t / d,a] '

In problems in which three- and four-wave interactions are both present, it can be assumed that the

three-wave processes are dominant [13]. In this case, the conclusion that the dissipation range spectrum

contains only horizontal vectors is consistent with the picture of energy transfer in rotating turbulence

(2.19)

Quartets of this form can always be found to satisfy the four-wave resonance condition



proposedon thebasisofclosurestudiesbyCambonetal. [14, 15], namely that in the inertial range, energy

is transferred to the wavenumber plane perpendicular to the rotation axis. Further theoretical support for

this conclusion was provided by the instability principle of Waleffe [9].

The impossibility of dissipating energy in nearly vertical directions by energy transfer to smaller scales

would naturally force the transfer of energy toward the horizontal plane, where viscous dissipation is possible.

Although this picture of energy transfer in the inertial and dissipation ranges is self-consistent, it must be

stressed that the conclusions about inertial range transfer do not require the strong restriction on the Rossby

number required here.

It should be noted that the prediction that the dissipation range is restricted to exactly horizontal vectors

is a consequence of ignoring the angular dependence of the wave time-scale. In fact, since the wave frequency

is 12kz/k, the condition kd, _ _ kd occurs for wavevectors satisfying kz/k _ cos0 where cosO= el/2/_'1/2_.

For these modes, the viscous time-scale is dominant, and the three-wave dissipation range extends to the

region -kcosO < kz _ kcos0 instead of to the plane k_ = 0. Note also that this argument shows that the

scale kd,_ in Eq. (2.17) should be replaced by the Kolmogorov scale kd.

The approximate two-dimensionalization of the small scales of rotating turbulence under the limit defined

by Eq. (2.2) raises the question of the relationship between the present results and the Taylor-Proudman the-

orem [16]. As noted by Smith and Walcffe [17], the large scales of rapidly rotating turbulence are always sub-

ject to the Taylor-Proudman theorem since they are nearly steady. Whereas the Taylor-Proudman theorem

requires the applicability of steady, linear dynamics, the present argument based on wave interactions allows

both unsteadiness and nonlinearity. The possibility that a combination of large-scale two-dimensionalization

due to the Taylor-Proudman theorem with two-dimensionalization of the small scales due to the impossibility

of certain three-wave interactions leads to two-dimensionalization of all scales of motion in the extreme limit

RoRe 1/2 << 1 is an interesting theoretical possibility which warrants further investigation.
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